Improve Brain Connectivity with Meditation

Improve Brain Connectivity with Meditation


By John M. de Castro, Ph.D.


“The meditation-and-the-brain research has been rolling in steadily for a number of years now, with new studies coming out just about every week to illustrate some new benefit of meditation. Or, rather, some ancient benefit that is just now being confirmed with fMRI or EEG. The practice appears to have an amazing variety of neurological benefits – from changes in grey matter volume to reduced activity in the “me” centers of the brain to enhanced connectivity between brain regions.“ – Alice Walton


There has accumulated a large amount of research demonstrating that mindfulness has significant benefits for psychological, physical, and spiritual wellbeing. It even improves high level thinking known as executive function and emotion regulation and compassion. Its positive effects are so widespread that it is difficult to find any other treatment of any kind with such broad beneficial effects on everything from thinking to mood and happiness to severe mental and physical illnesses. This raises the question of how mindfulness training could produce such widespread and varied benefits. One possibility is that mindfulness practice results in beneficial changes in the nervous system.


The nervous system is a dynamic entity, constantly changing and adapting to the environment. It will change size, activity, and connectivity in response to experience. These changes in the brain are called neuroplasticity. Over the last decade neuroscience has been studying the effects of contemplative practices on the brain and has identified neuroplastic changes in widespread areas. In other words, mindfulness practice appears to mold and change the brain, producing psychological, physical, and spiritual benefits. The changes are complex and require sophisticated brain scanning techniques to detect. Hence there is a need to continue investigating the nature of these changes in the brain produced by meditation.


In today’s Research News article “Differences in Functional Connectivity of the Insula Between Brain Wave Vibration in Meditators and Non-meditators.” (See summary below or view the full text of the study at: ), Jang and colleagues recruited meditation practitioners and meditation naïve participants. The meditation practitioners had been practicing Brain Wave Meditation daily for at least a year. This meditation technique “is designed to help quiet the thinking mind and release negative emotions by performing specific rhythmic physical movements and focusing on bodily sensations.” The participants then underwent resting functional Magnetic Resonance Imaging (fMRI) of their brains.


They found that in comparison to the meditation naïve controls the meditators had greater levels of functional connectivity between the Dorsolateral Prefrontal Cortex and the Insula and Thalamus. There was also increased functional connectivity between the Insula and the Superior Temporal Gyrus. The Insula Cortex is thought to be involved in interoceptive awareness, that is the awareness of the body and the sensations from the body. The Thalamus is the major sensory relay in the brain transferring sensory information throughout the brain. The Prefrontal Cortex is thought to be involved in attention and higher-level thinking, cognition.


The findings, then, suggest that meditation practice changes the brain in such a way as to improve attention and thought processes regarding internal sensations. This implies better attention to emotional states and better ability to regulate emotions. Indeed, it has been well established that meditation practice improves attention, high level thinking and emotion regulation. This, in turn, may underlie the increases in compassion toward the self and others that has been shown to occur in meditators. Better emotion regulation would increase psychological and physical well-being of practitioners. Thus, some of the benefits of meditation appear to be reflected in changes to the brain which may underlie these benefits.


So, improve brain connectivity with meditation.


an added bonus of meditating is that the connection between the helpful aspects of the Me Center (i.e. dorsomedial prefrontal cortex) – the part involved in processing information related to people we perceive as being not like us – and the bodily sensation center – involved in empathy – becomes stronger.” – Rebecca Gladding


CMCS – Center for Mindfulness and Contemplative Studies


This and other Contemplative Studies posts are also available on Google+ and on Twitter @MindfulResearch


Study Summary


Jang, J. H., Kim, J. H., Yun, J. Y., Choi, S. H., An, S. C., & Kang, D. H. (2018). Differences in Functional Connectivity of the Insula Between Brain Wave Vibration in Meditators and Non-meditators. Mindfulness, 9(6), 1857-1866.



The majority of meditation involves focusing attention on internal events or sensations and becoming aware of emotions. The insula cortex, through a functional connection with the prefrontal cortex and other brain regions, plays a key role in integrating external sensory information with internal bodily state signals and emotional awareness. The purpose of this exploratory study was to examine the resting-state functional connectivity of the insula with other brain regions in meditation practitioners and control subjects. Thirty-five Brain Wave Vibration meditation practitioners and 33 controls without meditation experience were included in this study. All subjects underwent 4.68-min resting-state functional scanning runs using magnetic resonance imaging. The anterior and posterior insulae were chosen as seed regions for the functional connectivity map. Meditation practitioners showed significantly greater insula-related functional connectivity in the thalamus, caudate, middle frontal gyrus, and superior temporal gyrus than did controls. Control subjects demonstrated greater functional connectivity with the posterior insula in the parahippocampal gyrus. Our findings suggest that the practice of Brain Wave Vibration meditation may be associated with functional differences in regions related to focused attention, executive control, and emotional awareness and regulation.


Leave a Reply

Your email address will not be published. Required fields are marked *