Improve Gastrointestinal Health with Meditation

Improve Gastrointestinal Health with Meditation

 

By John M. de Castro, Ph.D.

 

“Humans were never designed to be stressed out all the time, and when we learn to calm our nervous systems, our health improves dramatically. Our nervous system and the gut are inextricably linked.” – Buffy Owens

 

Stress affects gastrointestinal function. Short-term stress can produce a loss of appetite and slow digestion while long-term stress can produce heartburn, indigestion, nausea and vomiting, diarrhea, constipation and associated lower abdominal pain. Mindfulness is known to be helpful in reducing the psychological and physical responses to stress and contemplative practice has been shown to improve the symptoms of Irritable Bowel Syndrome and dyspepsia. In addition, mindfulness practices improve the intestinal bacteria that are important for digestion. So, it is likely that meditation practice would improve gastrointestinal health.

 

In today’s Research News article “Improvement in Gastrointestinal Quality of Life Index (GIQLI) following meditation: An open-trial pilot study in India.” (See summary below or view the full text of the study at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8039347/ ) Kanchibhotla and colleagues recruited healthy adults and had them engage in daily 20-minute meditation for 50 days. The practice was a focused meditation on the gut region. They were measured before, at 24 days and after the intervention period for gastrointestinal quality of life divided into five domains: core symptoms, physical, psychological, social, and disease specific.

 

They found that after 24 and 50 days of meditation practice there were significant improvements with large effect sizes in gastrointestinal quality of life, including all domains. There were some indications that the effects were larger for men than women. Clearly, there were large significant improvements after meditation in gastrointestinal function.

 

It should be kept in mind that this was a pilot study that lacked a comparison (control) condition leaving open a wide variety of confounding alternative interpretations such as expectancy effects, attention (Hawthorne) effects, experimenter bias, etc. But better controlled studies have reported that mindfulness improves gastrointestinal function. So, it is likely that in the present study the meditation practice improved gastrointestinal function. But future better controlled research is needed.

 

So, improve gastrointestinal health with meditation.

 

In calming your stress response, meditation can help prevent the slowed digestion speed, altered gene expression, intestinal permeability, and disruptive changes to gut microbes caused by stress.” – Crystal Starr

 

CMCS – Center for Mindfulness and Contemplative Studies

 

This and other Contemplative Studies posts are available on Twitter @MindfulResearch

 

Study Summary

 

Kanchibhotla, D., Sharma, P., & Subramanian, S. (2021). Improvement in Gastrointestinal Quality of Life Index (GIQLI) following meditation: An open-trial pilot study in India. Journal of Ayurveda and integrative medicine, 12(1), 107–111. https://doi.org/10.1016/j.jaim.2021.01.006

 

Abstract

Background

Medical science is increasingly recognizing the role of gut health in achieving optimal wellbeing. A healthy gut improves digestion. Additionally, it has a positive impact on multiple physiological networks such as immune system, central nervous system and hepato-endocrine system, thus contributing to the overall quality of life. Functional gastrointestinal disorders: also known as disorders of gut-brain interaction, such as irritable bowel syndrome are increasing worldwide. Conditions like stress, anxiety and mental disorders are correlated with these disorders. Mind-body interventions have been shown to ameliorate stress, anxiety and related conditions that may aggravate functional gastrointestinal disorders.

Objective

The present study aims to investigate the benefits of a novel meditation technique called the Vaishvanara Agni meditation (VAM) on the gastrointestinal quality of life.

Materials and methods

54 subjects participated in the study and practiced VAM for 50 days. During the Vaishvanara Agni meditation (VAM), attention is directed to the navel region and the digestive system. The effect of the meditation was evaluated using the gastrointestinal quality of life (GI-QoL) questionnaire, which was administered to subjects at three different time points i.e. day 0, day 24 and day 50.

Results

GI-QoL was significantly improved with the practice of VAM. Additionally, significant improvements were noticed in all sub domains especially core symptoms, physical strength and the psychological domain.

Conclusion

Meditation practices that focus on improving digestion can be an effective tool for improving gut health.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8039347/

 

Focused Meditation Changes Brain Activity Differently Then Open Monitoring Meditation

Focused Meditation Changes Brain Activity Differently Then Open Monitoring Meditation

 

By John M. de Castro, Ph.D.

 

It’s like asking a sport expert ‘what does sport do to your body’. The expert would say, do you mean swimming or horse-riding? You can imagine mental training being as complex.” – Tanya

Meditation training has been shown to improve health and well-being. It has also been found to be effective for a large array of medical and psychiatric conditions. One problem with understanding meditation effects is that there are a number of different types of meditation. Classically they’ve been characterized on a continuum with the degree and type of attentional focus. In focused attention meditation, the individual practices paying attention to a single meditation object, often the breath. In open monitoring meditation, the individual opens up awareness to everything that’s being experienced including thoughts regardless of their origin.

 

One way to observe the effects of meditation techniques is to measure the effects of each technique on the brain’s activity. This can be done by recording the Magnetoencephalography (MEG). It measures the magnetic fields associate with the brain’s electrical activity. This produces a mapping of structures that are active moment to moment. Whether these different meditation types produce different patterns of activity in the brain has not been extensively studied.

 

In today’s Research News article “Mining the Mind: Linear Discriminant Analysis of MEG Source Reconstruction Time Series Supports Dynamic Changes in Deep Brain Regions During Meditation Sessions.” (See summary below or view the full text of the study at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556220/ ) Calvetti and colleagues recruited 2 Buddhist monks who were highly experienced meditators and recorded their brain activity with Magnetoencephalography (MEG) over 6-minute periods while at rest, during focused attention meditation, and during open monitoring meditation.

 

They found that different brain area activities occurred during the two types of meditation particularly in the anterior and posterior cingulate cortex and insular cortex. They also found differences in the activities of core structures in the limbic system including the amygdala, accumbens, putamen, thalamus, and caudate.

 

That the two meditation styles produce different brain activity patterns is not surprising as they differ considerably in cognitive contents, particularly the involvement in attentional processes. The structures involved, however, are interesting as they are in general associated with emotional processing (limbic system and cortical areas) and motor movements (Caudate and Putamen). During neither meditation style are there either high emotions or motor movements. So, there is no clear reason why these structures should differ between focused attention meditation and open monitoring meditation. It should be kept in mind that the participants are unusual in the amount of practice and the number of years of practice and do not represent the general meditation population.

 

It is clear, however, that focused meditation changes brain activity differently than open monitoring meditation in highly experienced meditators.

 

Many meditation techniques are available today. Contrary to common belief there are distinct differences between techniques, such as the effort involved, their impact on the brain, and whether or not they result in verifiable benefits.” – Transcendental Meditation

 

CMCS – Center for Mindfulness and Contemplative Studies

 

This and other Contemplative Studies posts are also available on Google+ https://plus.google.com/106784388191201299496/posts and on Twitter @MindfulResearch

 

Study Summary

 

Calvetti, D., Johnson, B., Pascarella, A., Pitolli, F., Somersalo, E., & Vantaggi, B. (2021). Mining the Mind: Linear Discriminant Analysis of MEG Source Reconstruction Time Series Supports Dynamic Changes in Deep Brain Regions During Meditation Sessions. Brain topography, 34(6), 840–862. https://doi.org/10.1007/s10548-021-00874-w

 

Abstract

Meditation practices have been claimed to have a positive effect on the regulation of mood and emotions for quite some time by practitioners, and in recent times there has been a sustained effort to provide a more precise description of the influence of meditation on the human brain. Longitudinal studies have reported morphological changes in cortical thickness and volume in selected brain regions due to meditation practice, which is interpreted as an evidence its effectiveness beyond the subjective self reporting. Using magnetoencephalography (MEG) or electroencephalography to quantify the changes in brain activity during meditation practice represents a challenge, as no clear hypothesis about the spatial or temporal pattern of such changes is available to date. In this article we consider MEG data collected during meditation sessions of experienced Buddhist monks practicing focused attention (Samatha) and open monitoring (Vipassana) meditation, contrasted by resting state with eyes closed. The MEG data are first mapped to time series of brain activity averaged over brain regions corresponding to a standard Destrieux brain atlas. Next, by bootstrapping and spectral analysis, the data are mapped to matrices representing random samples of power spectral densities in α, β, γ, and θ frequency bands. We use linear discriminant analysis to demonstrate that the samples corresponding to different meditative or resting states contain enough fingerprints of the brain state to allow a separation between different states, and we identify the brain regions that appear to contribute to the separation. Our findings suggest that the cingulate cortex, insular cortex and some of the internal structures, most notably the accumbens, the caudate and the putamen nuclei, the thalamus and the amygdalae stand out as separating regions, which seems to correlate well with earlier findings based on longitudinal studies.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556220/

 

Mindfulness Traits May Affect the Ability of Brief Meditation to Improve Attention

Mindfulness Traits May Affect the Ability of Brief Meditation to Improve Attention

 

By John M. de Castro, Ph.D.

 

“even relatively short daily meditation practice can have similar behavioral effects as longer duration and higher-intensity mediation practices.” – Julia Basso

 

One of the primary effects of mindfulness training is an improvement in the ability to pay attention to the task at hand and ignore interfering stimuli. This is an important consequence of mindfulness training and produces improvements in thinking, reasoning, and creativity. The importance of heightened attentional ability to the individual’s ability to navigate the demands of complex modern life cannot be overstated. It helps in school, at work, in relationships, or simply driving a car. As important as attention is, it’s surprising that little is known about the how much meditation and what types of meditation work best to improve attention

 

In today’s Research News article “Individual Differences in the Change of Attentional Functions With Brief One-Time Focused Attention and Open Monitoring Meditations.” (See summary below or view the full text of the study at: https://www.frontiersin.org/articles/10.3389/fpsyg.2021.716138/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1765474_a0P58000000G0YfEAK_Psycho_20211102_arts_A ) Tanaka and colleagues recruited university students and randomly assigned them to no-meditation, focused meditation, or open monitoring meditation. The participants were measured for mindfulness, and attentional functions (alerting, orienting, and conflict monitoring). They then spent 30 minutes either listening to music, focused meditation, or open monitoring meditation followed by measurement of attentional functions.

 

They found that before and after the 30-minute interventions there were no significant differences in attentional functions or mindfulness between the groups. But they found that individual differences in mindfulness affected the effects of the interventions on the alerting attentional function. In particular, employing stepwise multiple regressions, that for participants who practiced focused meditation the higher the nonreactivity mindfulness score the smaller the change in the alerting score. In addition, for participants who practiced open monitoring meditation the higher the describing mindfulness score the larger the change in the alerting score.

 

It has been previously demonstrated that mindfulness training over a period of time improves attention. The present findings, though, show that a brief, one-time meditation, regardless of type, is not sufficient to improve attention. This suggests that attentional improvement requires repeated meditation practices. The results also suggest that people with different levels of mindfulness may respond differently to meditation affecting attention. There were, however, multiple comparisons (45) involved here and only 2 were significantly different. This could occur be chance. So, caution must be exercised in reaching conclusions about these relationships until they can be replicated.

 

So, mindfulness traits may affect the ability of brief meditation to improve attention.

 

Mindfulness and meditation can have a tangible effect on the way your brain processes and stores information, reducing your stress, increasing your ability to respond flexibly to change, and can improve your ability to focus on tasks and pay attention over a period of time.“ – Maren Hunsberger

 

CMCS – Center for Mindfulness and Contemplative Studies

 

This and other Contemplative Studies posts are also available on Google+ https://plus.google.com/106784388191201299496/posts and on Twitter @MindfulResearch

 

Study Summary

 

Tanaka M, Nakashima R, Hiromitsu K and Imamizu H (2021) Individual Differences in the Change of Attentional Functions With Brief One-Time Focused Attention and Open Monitoring Meditations. Front. Psychol. 12:716138. doi: 10.3389/fpsyg.2021.716138

 

Mindfulness meditation is increasingly used for clinical treatment and to improve well-being. One of the most fundamental benefits of mindfulness meditation is now considered as enhanced attentional control. Mindfulness meditation is a complex technique but most of its variants consist of a combination of two types of basic meditation practice: focused attention meditation (FAM) and open monitoring meditation (OMM). Although many studies have examined the effect of relatively long-term meditation on attention, some recent studies have focused on the effect of a brief one-time meditation on cognitive processing, including attentional functions. Furthermore, it is necessary to discuss the relationship between the effect of mindfulness meditation on attentional functions and personality traits (especially traits related to mindfulness). This study investigated whether attentional control is improved by a single 30-min FAM or OMM and whether the degree of improvement in attentional functions – alerting, orienting, and conflict monitoring – induced by the meditation varies according to the participant’s trait scores related to mindfulness measured by the Five Facets Mindfulness Questionnaire. Participants were randomly assigned to one of three groups, i.e., FAM, OMM, and no-meditation (noM) groups, and given an Attentional Network Test before and after each 30-min meditation session. Compared with the noM group, there was no overall improvement in attentional functions with either type of meditation. However, there were associations between the change of the alerting function’s score and the personality traits: in the FAM group, alerting scores were negatively associated with the nonreactivity facet of the FFMQ, and in the OMM group, alerting scores were positively associated with describing facet scores of the FFMQ. The results indicate that the effects of meditation methods on attentional functions could depend on the individual’s traits related to mindfulness and that mindfulness meditation could sometimes appear to have no impact on attentional functions.

https://www.frontiersin.org/articles/10.3389/fpsyg.2021.716138/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1765474_a0P58000000G0YfEAK_Psycho_20211102_arts_A

 

Increase Brain Activity with Brief Exercise and Meditation

Increase Brain Activity with Brief Exercise and Meditation

 

By John M. de Castro, Ph.D.

 

Meditating for a few minutes might help rein in those wandering thoughts and help you stay focused throughout the day. But meditating can have an even bigger impact. Some studies show that it affects the brain in various ways, from changing the brain’s volume to decreasing activity in the parts of the brain responsible for stress.” – Lela Moore

 

Mindfulness training has been shown through extensive research to be effective in improving physical and psychological health and particularly with reducing the physical and psychological reactions to stress. There are a number of ways that meditation practices produce these benefits, including changes to the brain and physiology. The nervous system changes in response to how it is used and how it is stimulated in a process called neuroplasticity. Highly used areas grow in size, metabolism, and connectivity. Mindfulness practices in general are known to produce these kinds of changes in the structure and activity of the brain. One way to observe the effects of meditation on the nervous system is to measure changes in the functional near‐infrared spectroscopy (fNIRS), which measures blood flow to brain areas.

 

In today’s Research News article “Activation of the orbitofrontal cortex by both meditation and exercise: A near-infrared spectroscopy study.” (See summary below or view the full text of the study at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901739/ ) Miyashiro and colleagues recruited healthy adults and had them perform 20 minutes of breath following meditation, exercise (pushups), or a control task (movie of scenery with relaxing music) in a random order. They then performed a 2-back test of attention involving presentation of a sequence of numbers and after a prompt, the recall of the number 2 places back. While performing this task the participants underwent measurement of brain activation with functional near‐infrared spectroscopy (fNIRS).

 

They did not observe a significant difference between groups on the 2-back test. But in comparison to the control condition, the meditation and exercise groups had significantly increased activation of the edges of the orbitofrontal cortex (insular cortex) that then spread to the central orbitofrontal cortex. The 20-minute interventions were too short to invoke neuroplasticity and produce long-lasting changes in this brain. The orbitofrontal cortex is known to be involved in attention. So, it is not surprising that attention demanding exercise and meditation would alter its activity while the plotless video would invoke mind wandering and a loss of attention.

 

So, increase brain activity with brief exercise and meditation.

 

]“meditation nurtures the parts of the brain that contribute to well-being. Furthermore, it seems that a regular practice deprives the stress and anxiety-related parts of the brain of their nourishment.” – Mindworks

 

CMCS – Center for Mindfulness and Contemplative Studies

 

This and other Contemplative Studies posts are also available on Google+ https://plus.google.com/106784388191201299496/posts and on Twitter @MindfulResearch

 

Study Summary

 

Miyashiro, S., Yamada, Y., Muta, T., Ishikawa, H., Abe, T., Hori, M., Oka, K., Koshikawa, F., & Ito, E. (2021). Activation of the orbitofrontal cortex by both meditation and exercise: A near-infrared spectroscopy study. PloS one, 16(2), e0247685. https://doi.org/10.1371/journal.pone.0247685

 

Abstract

In some types of meditation, such as mindfulness and Zen, breathing is the focus of attention, whereas during an excessive, short-period of anaerobic exercise, the muscles become the focus of attention. Thus, during both efforts, one’s attention is focused on a certain feature of the body. Both meditation and exercise generally provide mental refreshment to humans. We hypothesized that the same brain regions are activated by both efforts in humans. To examine this hypothesis, we engaged participants in 3 tasks: meditation, exercise, and a control task. After each task, the participants underwent a 2-back test to concentrate their thoughts, while changes in their blood hemoglobin levels were simultaneously monitored using near-infrared spectroscopy (NIRS). Seventeen participants (20–24 years of age; 11 men, 6 women) were enrolled. We applied a fast-Fourier transform (FFT) analysis to the NIRS wave data and calculated the correlation coefficients of the FFT data between (1) meditation and control, (2) exercise and control, and (3) meditation and exercise, at the orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC), brain areas that are generally involved in mental refreshment. A significant difference in the correlation coefficients between the OFC and DLPFC was detected in the meditation and exercise analysis, and signal source analysis confirmed that the NIRS waves spread from the right and left OFC edges (i.e., right and left temples) toward the center. Our results suggest that both meditation and exercise activate the OFC, which is involved in emotional reactions and motivation behavior, resulting in mental refreshment.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901739/

Improve Working Memory and Increase Brain Activity with a Single Focused Meditation in Novice Meditators

Improve Working Memory and Increase Brain Activity with a Single Focused Meditation in Novice Meditators

 

By John M. de Castro, Ph.D.

 

“Regular meditation increases blood flow to the brain, which leads to a stronger network of blood vessels in the cerebral cortex and reinforces memory capacity.” – Mindworks

 

Humans have both an amazing capacity to remember and a tremendously limited capacity depending upon which phase of the memory process. Our long-term store of information is virtually unlimited. On the other hand, short-term memory is extremely limited. This is called our working memory and it can contain only about 5 to 9 pieces of information at a time. This fact of a limited working memory store shapes a great deal about how we think, summarize, and categorize our world.

 

Memory ability is so important to everyday human functioning that it is important to study ways to maintain or improve it. Mindfulness has been shown to improve working memory capacity. Since the brain is responsible for working memory, the effects of mindfulness training on working memory must in some way be altering the brain. One way to observe the effects of meditation on the nervous system is to measure changes in the functional near‐infrared spectroscopy (fNIRS), which measures blood flow to brain areas. Hence, it makes sense to observe the effects of meditation on working memory and its association with cerebral flows.

 

In today’s Research News article “Effect of one-session focused attention meditation on the working memory capacity of meditation novices: A functional near-infrared spectroscopy study.” (See summary below or view the full text of the study at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413779/ ) Yamaya and colleagues recruited adult meditation naïve university students and randomly assigned them to practice for 15 minutes focused breath following meditation or listen to disconnected random conversations. During the 15-minute intervention period cerebral blood flow was measured with functional near‐infrared spectroscopy (fNIRS). They were also measured 5 minutes before and 5 minutes after the 15-minute intervention period for working (short-term) memory.

 

They found that in comparison to baseline and the random thinking control group, the group that performed focused meditation had a significant increase in working memory capacity and a significant increase in cerebral blood flow to the dorsolateral prefrontal cortex. They found that the working memory change and the cerebral blood flow change were significantly correlated such that the greater the increase in cerebral blood flow, the greater the increase in working memory.

 

The results are interesting that a single 15-minute meditation by meditation naïve participants immediately increases working memory. The results further suggest that this memory improvement is associated with an increase in the flow of blood to a particular brain area, the dorsolateral prefrontal cortex, that has been shown to be involved in focused attention. This suggests that focused meditation activates the dorsolateral prefrontal cortex which improves working memory.

 

The very short-term nature of the study precludes any neuroplastic changes in the brain. But previous research has found that longer-term meditation produces long-term changes in the dorsolateral prefrontal cortex. It is unfortunate that in the present study there wasn’t a follow up to determine if the effects of the single 15-minute meditation were immediate and transitory or persisted for a period of time. Regardless, the results may provide a glimpse as to how meditation changes brain systems and in turn memory.

 

So, improve working memory and increase brain activity with a single focused meditation in novice meditators.

 

the mindfulness group had significantly less proactive interference during the memory test compared to the writing group, indicating an improvement in short-term memory.” – Jill Suttie

 

CMCS – Center for Mindfulness and Contemplative Studies

 

This and other Contemplative Studies posts are also available on Google+ https://plus.google.com/106784388191201299496/posts and on Twitter @MindfulResearch

 

Study Summary

 

Yamaya, N., Tsuchiya, K., Takizawa, I., Shimoda, K., Kitazawa, K., & Tozato, F. (2021). Effect of one-session focused attention meditation on the working memory capacity of meditation novices: A functional near-infrared spectroscopy study. Brain and behavior, 11(8), e2288. https://doi.org/10.1002/brb3.2288

 

Abstract

Introduction

Previous studies have revealed that one‐session focused attention meditation (FAM) can improve top‐down attention control, which is one of the factors of working memory capacity (WMC). In addition, FAM shares various neural substrates, including the dorsolateral prefrontal cortex (DLPFC), with WMC. Thus, we hypothesized that one‐session FAM would improve WMC by activating the DLPFC evoked by the top‐down attention control. In this study, we examined whether FAM modified WMC in individuals with little to no meditation experience.

Methods

The participants were randomly assigned to either the FAM group (N = 13) or the control group (N = 17) who engaged in random thinking (i.e., mind‐wandering). Before and after each 15‐min intervention, the participants’ WMC was measured according to the total number of correct answers in the Reading Span Test. During each intervention, functional near‐infrared spectroscopy was employed to measure the blood flow in the participants’ DLPFC and determine the top‐down attention control effect.

Results

In the FAM group, WMC increased, and the bilateral DLPFC was activated during the intervention. As for the control group, WMC decreased after the intervention, and the bilateral DLPFC was not activated during the intervention. A correlation was also found among all participants between the increase in WMC and the activation of the bilateral DLPFC.

Conclusion

The study findings suggest that top‐down attention control during FAM can activate the bilateral DLPFC and increase WMC among meditation novices.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413779/

 

Different Meditation Types Alter Brain Connectivity Patters Differently Over the Long Term

Different Meditation Types Alter Brain Connectivity Patters Differently Over the Long Term

 

By John M. de Castro, Ph.D.

 

“[Meditation], regardless of each individual’s chosen object of attention, increases functional connectivity within attentional networks as well as increases connectivity across distributed brain regions serving attention, self-referential, and visual processes.” – Zongpai Zhang

 

There has accumulated a large amount of research demonstrating that meditation practice has significant benefits for psychological, physical, and spiritual wellbeing. One way that meditation practices may produce these benefits is by altering the brain. The nervous system is a dynamic entity, constantly changing and adapting to the environment. It will change size, activity, and connectivity in response to experience. These changes in the brain are called neuroplasticity. Over the last decade neuroscience has been studying the effects of contemplative practices on the brain and has identified neuroplastic changes in widespread areas. In other words, meditation practice appears to mold and change the brain, producing psychological, physical, and spiritual benefits.

 

In today’s Research News article “Neuroplasticity within and between Functional Brain Networks in Mental Training Based on Long-Term Meditation.” (See summary below or view the full text of the study at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393942/ ) Guidotti and colleagues recruited Buddhist monks highly experienced with both focused and open monitoring meditation (average of 16.4 years of practice with an average of 1200 hours of practice per year). They underwent functional Magnetic Resonance Imaging (fMRI) brain scans during 6-minute meditations with focused and with open monitoring techniques.

 

They found that connectivity patterns were associated with the age of the participants during both meditation techniques. On the other hand, connectivity patterns were associated with years of meditation experience differently during focused versus open monitoring meditation. During both meditation types the functional connectivity within the Salience Network of the brain was reduced. During focused meditation there was increased connectivity within the Visual Network. During open monitoring meditation there was increase connectivity within the Executive Network and between the Executive and Language Networks. During open monitoring meditation there was also increase connectivity with Sensorimotor Network and its connections with the Default Mode Network.

 

These results are complicated and involve only experienced meditators. So, it is unknown whether the findings apply to novice or less experienced meditators and it cannot be determined what the differences might be in the brains of these highly experience meditators compared to non-meditators. But the results suggest that during focused and open monitoring meditation types have the same relationships with age related connectivity patterns in the brain while they have different associations with connectivity patterns in association with experience. This suggests that the two meditation types produce different neuroplastic changes in the brain as experience accumulates.

 

So, different meditation types alter brain connectivity patters differently over the long term.

 

people who meditate may actually have quicker brains than the rest of us. . . meditation can improve your brain’s ability to quickly switch between two main states of consciousness.” – Katie Spalding

 

CMCS – Center for Mindfulness and Contemplative Studies

 

This and other Contemplative Studies posts are also available on Google+ https://plus.google.com/106784388191201299496/posts and on Twitter @MindfulResearch

 

Study Summary

 

Guidotti, R., Del Gratta, C., Perrucci, M. G., Romani, G. L., & Raffone, A. (2021). Neuroplasticity within and between Functional Brain Networks in Mental Training Based on Long-Term Meditation. Brain sciences, 11(8), 1086. https://doi.org/10.3390/brainsci11081086

 

Abstract

(1) The effects of intensive mental training based on meditation on the functional and structural organization of the human brain have been addressed by several neuroscientific studies. However, how large-scale connectivity patterns are affected by long-term practice of the main forms of meditation, Focused Attention (FA) and Open Monitoring (OM), as well as by aging, has not yet been elucidated. (2) Using functional Magnetic Resonance Imaging (fMRI) and multivariate pattern analysis, we investigated the impact of meditation expertise and age on functional connectivity patterns in large-scale brain networks during different meditation styles in long-term meditators. (3) The results show that fMRI connectivity patterns in multiple key brain networks can differentially predict the meditation expertise and age of long-term meditators. Expertise-predictive patterns are differently affected by FA and OM, while age-predictive patterns are not influenced by the meditation form. The FA meditation connectivity pattern modulated by expertise included nodes and connections implicated in focusing, sustaining and monitoring attention, while OM patterns included nodes associated with cognitive control and emotion regulation. (4) The study highlights a long-term effect of meditation practice on multivariate patterns of functional brain connectivity and suggests that meditation expertise is associated with specific neuroplastic changes in connectivity patterns within and between multiple brain networks.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393942/

 

Increase Relaxation with Focused Meditation while Increasing Activation with Open Monitoring Meditation

Increase Relaxation with Focused Meditation while Increasing Activation with Open Monitoring Meditation

 

By John M. de Castro, Ph.D.

 

Mindfulness meditation consists of focused attention meditation (FAM) and open monitoring meditation (OMM), both of which reduce activation of the default mode network (DMN) and mind-wandering.” – Masahiro Fujino

 

Meditation training has been shown to improve health and well-being. It has also been found to be effective for a large array of medical and psychiatric conditions, either stand-alone or in combination with more traditional therapies. As a result, meditation training has been called the third wave of therapies. One problem with understanding meditation effects is that there are, a wide variety of meditation techniques and it is not known which work best for affecting different psychological areas.

 

There are a number of different types of meditation. Classically they’ve been characterized on a continuum with the degree and type of attentional focus. In focused attention meditation, the individual practices paying attention to a single meditation object, often the breath. In open monitoring meditation, the individual opens up awareness to everything that’s being experienced including thoughts regardless of its origin. Whether these different meditation types produce different effects has not been extensively studied.

 

In today’s Research News article “Differential Effects of Focused Attention and Open Monitoring Meditation on Autonomic Cardiac Modulation and Cortisol Secretion.” (See summary below or view the full text of the study at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320390/ ) Ooishi and colleagues recruited healthy adult meditation novices and had them engage in 30 minutes of either focused attention meditation, focusing on the breath, or open monitoring meditation in randomized order separated by 2 hours. They were measured before and after each meditation for heart rate, heart rate variability, respiration rate, and salivary cortisol.

 

They found that focused attention meditation and open monitoring meditation both reduced respiration rates but produced different physiological responses. Analysis of the heart rate variability data revealed changes in the autonomic nervous system’s components of the sympathetic and parasympathetic nervous systems. These analyses suggested that focused attention meditation produced an increase in parasympathetic activation but not sympathetic activation while open monitoring meditation produced an increase in sympathetic activation but not parasympathetic activation and reduced salivary cortisol levels.

 

These findings suggest that focused attention meditation is associated with physiological relaxation while open monitoring meditation is associated with physiological activation. This fits with the findings that focused attention meditation produces greater reductions in anxiety compared to open monitoring meditation. But it needs to be kept in mind that the study employed brief, one-time meditations by meditation naïve participants. It is possible that focused attention meditation is simpler and produces less stress in naive participants while open monitoring meditation is more difficult to learn requiring greater effort and stress. It is clear that this work needs to be replicated with longer term meditation practice.

 

So, increase relaxation with focused meditation while increasing activation with open monitoring meditation.

 

Focused attention meditation improves focus.  . . an increased consciousness of bodily sensations. The open-monitoring meditation . .  increases our ability to resolve conflicts.  Open Monitoring meditation increases creativity by improving divergent and convergent thinking.” – Daily Meditation

 

CMCS – Center for Mindfulness and Contemplative Studies

 

This and other Contemplative Studies posts are also available on Google+ https://plus.google.com/106784388191201299496/posts and on Twitter @MindfulResearch

 

Study Summary

 

Ooishi, Y., Fujino, M., Inoue, V., Nomura, M., & Kitagawa, N. (2021). Differential Effects of Focused Attention and Open Monitoring Meditation on Autonomic Cardiac Modulation and Cortisol Secretion. Frontiers in Physiology, 12, 675899. https://doi.org/10.3389/fphys.2021.675899

 

Abstract

Mindfulness-based interventions (MBIs) have been used widely as a useful tool for the alleviation of various stress-related symptoms. However, the effects of MBIs on stress-related physiological activity have not yet been ascertained. MBIs primarily consist of focused-attention (FA) and open-monitoring (OM) meditation. Since differing effects of FA and OM meditation on brain activities and cognitive tasks have been mentioned, we hypothesized that FA and OM meditation have also differing effects on stress-related physiological activity. In this study, we examined the effects of FA and OM meditation on autonomic cardiac modulation and cortisol secretion. Forty-one healthy adults (aged 20–46 years) who were meditation novices experienced 30-min FA and OM meditation tasks by listening to instructions. During resting- and meditation-states, electrocardiogram transducers were attached to participants to measure the R-R interval, which were used to evaluate heart rate (HR) and perform heart rate variability (HRV) analyses. Saliva samples were obtained from participants pre- and post-meditation to measure salivary cortisol levels. Results showed that FA meditation induced a decrease in HR and an increase in the root mean square of successive differences (rMSDD). In contrast, OM meditation induced an increase in the standard deviation of the normal-to-normal interval (SDNN) to rMSSD ratio (SDNN/rMSSD) and a decrease in salivary cortisol levels. These results suggest that FA meditation elevates physiological relaxation, whereas OM meditation elevates physiological arousal and reduces stress.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320390/

 

Meditation Increases Functional Connectivity of Brain Networks

Meditation Increases Functional Connectivity of Brain Networks

 

By John M. de Castro, Ph.D.

 

It seems the longer you do meditation, the better your brain will be at self-regulation,” – Bin He

 

Mindfulness training has been shown through extensive research to be effective in improving physical and psychological health and particularly with reducing the physical and psychological reactions to stress. There are a number of ways that meditation practices produce these benefits, including changes to the brain and physiology. The nervous system changes in response to how it is used and how it is stimulated in a process called neuroplasticity. Highly used areas grow in size, metabolism, and connectivity. Mindfulness practices in general are known to produce these kinds of changes in the structure and activity of the brain. There is little research, however, on how these changes develop with meditation.

 

In today’s Research News article “Longitudinal effects of meditation on brain resting-state functional connectivity.” (See summary below or view the full text of the study at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166909/ ) Zhang and colleagues recruited novice meditators enrolled in a university meditation course. They practiced focused attention meditation over 2 months twice a week in class and at home 5 times per week for 10 minutes. Before and after training the students had their brains scanned with functional Magnetic Resonance Imaging (f-MRI).

 

They found that after the 2-month meditation training the participants had significant increases in the functional connectivity within the Dorsal Attention Network of the brain and between the Dorsal Attention Network and the Default Mode Network and also between the Default Mode Network and the visual cortex.

 

The Dorsal Attention Network is a series of structures in the brain that are associated with attentional focusing while the Default Mode Network is a series of structures in the brain that are associated with self-referential thought and mind wandering. Typically, during focused attention meditation, particularly in novice meditators, the mind switches back and forth between focus on the object of meditation and unfocused mind wandering. During mind wandering, visualizations of this content often occur. This usually occurs repeatedly during the meditation session. This switching involves going back and forth between the Dorsal Attention Network and the Default Mode Network and the visual areas of the brain. The brain scan findings indicate that this results in an increase in the functional connectivity between the two networks. Hence, the changes in the mental contents during meditation are reflected in brain activity.

 

So, meditation increases functional connectivity of brain networks.

 

So, not only did meditation change the structures in the participants’ brains, it also changed how they felt.” – Lela Moore

 

CMCS – Center for Mindfulness and Contemplative Studies

 

This and other Contemplative Studies posts are also available on Google+ https://plus.google.com/106784388191201299496/posts and on Twitter @MindfulResearch

 

Study Summary

 

Zhang, Z., Luh, W. M., Duan, W., Zhou, G. D., Weinschenk, G., Anderson, A. K., & Dai, W. (2021). Longitudinal effects of meditation on brain resting-state functional connectivity. Scientific reports, 11(1), 11361. https://doi.org/10.1038/s41598-021-90729-y

 

Abstract

Changes in brain resting-state functional connectivity (rsFC) were investigated using a longitudinal design by following a 2-month focused attention meditation (FAM) practice and analyzing their association with FAM practice time. Ten novice meditators were recruited from a university meditation course. Participants were scanned with a resting-state fMRI sequence with multi-echo EPI acquisition at baseline and at the 2-month follow-up. Total FAM practice time was calculated from the daily log of the participants. We observed significantly increased rsFC between the posterior cingulate cortex (PCC) and dorsal attention network (DAN), the right middle temporal (RMT) region and default mode network (DMN), the left and right superior parietal lobules (LSPL/RSPL) and DMN, and the LSPL/RSPL and DAN. Furthermore, the rsFC between the LSPL and medial prefrontal cortex was significantly associated with the FAM practice time. These results demonstrate increased connectivity within the DAN, between the DMN and DAN, and between the DMN and visual cortex. These findings demonstrate that FAM can enhance the brain connection among and within brain networks, especially DMN and DAN, indicating potential effect of FAM on fast switching between mind wandering and focused attention and maintaining attention once in the attentive state.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166909/

 

Different Meditation Styles Affect the Medial Frontal Brain Network Differently

Different Meditation Styles Affect the Medial Frontal Brain Network Differently

 

By John M. de Castro, Ph.D.

 

“meditation has a variety of neurological benefits, from changes in brain volume to decreasing activity in parts of the brain involved with stress.” – Ashley Welch

 

Mindfulness training has been shown to improve health and well-being. It has also been found to be effective for a large array of medical and psychiatric conditions, either stand-alone or in combination with more traditional therapies. How exactly mindfulness practices produce their benefits is unknown. But it is known that meditation practice alters brain activity.

 

There are a number of different types of meditation. Classically they’ve been characterized on a continuum with the degree and type of attentional focus. In focused attention meditation, the individual practices paying attention to a single meditation object, usually the breath. In open monitoring meditation, the individual opens up awareness to everything that’s being experienced including thoughts regardless of its origin. In Loving Kindness Meditation the individual

systematically pictures different individuals from self, to close friends, to enemies and wishes them happiness, well-being, safety, peace, and ease of well-being. It is suspected but not known that different forms of meditation practice can produce different changes in brain activity.

 

One way is to measure changes in the electroencephalogram (EEG), the rhythmic electrical activity that can be recorded from the scalp. In today’s Research News article “Attentional and cognitive monitoring brain networks in long-term meditators depend on meditation states and expertise.” (See summary below or view the full text of the study at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921394/ )  Yordanova and colleagues recruited highly experienced meditators who practiced focused attention meditation, open monitoring meditation, and Loving Kindness Meditation in a balanced way. They had their electroencephalograms (EEG) recorded while at rest and while performing the 3 meditation types for 3 minutes each.

 

They found that the Frontal-Parietal network, that is thought to underlie attentional mechanisms did not differ between meditation types. But there was increased connectivity between the right hemisphere frontal and left hemisphere parietal areas. On the other hand, the Medial Frontal network that is thought to underlie cognitive control and monitoring mechanisms had different activity patterns with the different meditation types. During focused attention meditation was increased synchronization in the parietal regions whereas during Loving Kindness Meditation it increased in the right frontal regions.

 

These are interesting findings that demonstrate that highly experienced meditators have distinct changes in the activity of their brains during meditation regardless of type. But in areas associated with cognitive monitoring mechanisms, difference appear. During focused attention meditation and Loving Kindness Meditation there are different patterns of activity. To some extent this is not surprising in that the two meditation types involve specific focuses. But Loving Kindness Meditation is emotionally focused while focused attention meditation is breath sensation focused and these require different kinds of cognitive control. These differences may underlie the different medial frontal activities.

 

It should be noted that these patterns are quite different from those of inexperienced meditators and that the greater the amount of practice the greater the neural activations. It would be expected that highly experienced meditators would have greater focus and much less mind wandering during meditation than inexperience meditators and this would produce different patterns of neural activation.

 

So, different meditation styles affect the medial frontal brain network differently.

 

Meditation benefits for the brain are abundant. Meditating strengthens neural connections and can literally change the configuration of these networks. With regular practice, you can cultivate a more resilient neurobiology.” – Ask the Scientists

 

CMCS – Center for Mindfulness and Contemplative Studies

 

This and other Contemplative Studies posts are also available on Google+ https://plus.google.com/106784388191201299496/posts and on Twitter @MindfulResearch

 

Study Summary

 

Yordanova, J., Kolev, V., Nicolardi, V., Simione, L., Mauro, F., Garberi, P., Raffone, A., & Malinowski, P. (2021). Attentional and cognitive monitoring brain networks in long-term meditators depend on meditation states and expertise. Scientific reports, 11(1), 4909. https://doi.org/10.1038/s41598-021-84325-3

 

Abstract

Meditation practice is suggested to engage training of cognitive control systems in the brain. To evaluate the functional involvement of attentional and cognitive monitoring processes during meditation, the present study analysed the electroencephalographic synchronization of fronto-parietal (FP) and medial-frontal (MF) brain networks in highly experienced meditators during different meditation states (focused attention, open monitoring and loving kindness meditation). The aim was to assess whether and how the connectivity patterns of FP and MF networks are modulated by meditation style and expertise. Compared to novice meditators, (1) highly experienced meditators exhibited a strong theta synchronization of both FP and MF networks in left parietal regions in all mediation styles, and (2) only the connectivity of lateralized beta MF networks differentiated meditation styles. The connectivity of intra-hemispheric theta FP networks depended non-linearly on meditation expertise, with opposite expertise-dependent patterns found in the left and the right hemisphere. In contrast, inter-hemispheric FP connectivity in faster frequency bands (fast alpha and beta) increased linearly as a function of expertise. The results confirm that executive control systems play a major role in maintaining states of meditation. The distinctive lateralized involvement of FP and MF networks appears to represent a major functional mechanism that supports both generic and style-specific meditation states. The observed expertise-dependent effects suggest that functional plasticity within executive control networks may underpin the emergence of unique meditation states in expert meditators.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921394/

 

Increase the Energy Metabolism of the Brain with Meditation

Increase the Energy Metabolism of the Brain with Meditation

 

By John M. de Castro, Ph.D.

 

As a form of mental training, meditation improves core physical and psychological assets, including energy, motivation, and strength. Studies on the neurophysiological concomitants of meditation have proved that commitment to daily practice can bring promising changes for the mind and the body.” –  Madhuleena Roy Chowdhury

 

Mindfulness training has been shown through extensive research to be effective in improving physical and psychological health and particularly with reducing the physical and psychological reactions to stress. There are a number of ways that meditation practices produce these benefits, including changes to the brain and physiology. The nervous system changes in response to how it is used and how it is stimulated in a process called neuroplasticity. Highly used areas grow in size, metabolism, and connectivity. Mindfulness practices in general are known to produce these kinds of changes in the structure and activity of the brain.

 

In today’s Research News article “Short-term meditation training influences brain energy metabolism: A pilot study on 31 P MR spectroscopy.” (See summary below or view the full text of the study at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821578/ ) Gizewski and colleagues recruited healthy adult meditation naïve yoga students and provided them with 7 weeks of twice a week 45-minute training in Raja yoga meditation. This focused meditation training emphasizes the cessation of thinking and includes meditation and breathing exercises. They were measured before and after training for meditative depth, health history, lifestyle, anxiety, depression, and angst. Before and after training they also underwent brain scanning with structural Magnetic Resonance Imaging (MRI) and for brain energy metabolism (31P-MRS).

 

They found that in comparison to baseline after Raja yoga meditation training there were significant increases overall mental health and decreases in anxiety and dysthymia. There were also significant increases in brain energy metabolism particularly in the right hemisphere in the occipital and temporal lobes and the basal ganglia.

 

This study did not contain a comparison, control, condition which opens the results up to some alternative interpretations. But ignoring these possible contaminants, the study suggests that 7 weeks of meditation training can alter the brain. This has been demonstrated with numerous studies of changes in the structure, connectivity, and electrical activity of the brain produced by mindfulness training. The present study adds to this understanding by demonstrating the focused meditation training increases the energy metabolism in the brain particularly in the posterior cerebral cortex and the motor control areas. Meditation training is thought to be relaxing and the technique used here is one that emphasizes reduction in mental activity. But the present study suggests that the brain can get very active. This suggests that there is considerable mental activity going on during meditation.

 

So, increase the energy metabolism of the brain with meditation.

 

Meditation is thought to work via its effects on the sympathetic nervous system, which increases heart rate, breathing, and blood pressure during times of stress. Yet meditating has a spiritual purpose, too. “True, it will help you lower your blood pressure, but so much more: it can help your creativity, your intuition, your connection with your inner self,” –  Burke Lennihan,

 

CMCS – Center for Mindfulness and Contemplative Studies

 

This and other Contemplative Studies posts are also available on Google+ https://plus.google.com/106784388191201299496/posts and on Twitter @MindfulResearch

 

Study Summary

 

Gizewski, E. R., Steiger, R., Waibel, M., Pereverzyev, S., Sommer, P., Siedentopf, C., Grams, A. E., Lenhart, L., & Singewald, N. (2021). Short-term meditation training influences brain energy metabolism: A pilot study on 31 P MR spectroscopy. Brain and behavior, 11(1), e01914. https://doi.org/10.1002/brb3.1914

 

Abstract

Background

Meditation is increasingly attracting interest among neuroimaging researchers for its relevance as a cognitive enhancement technique and several cross‐sectional studies have indicated cerebral changes. This longitudinal study applied a distinct and standardized meditative technique with a group of volunteers in a short‐term training program to analyze brain metabolic changes.

Methods

The effect of 7 weeks of meditation exercises (focused attention meditation, FAM) was assessed on 27 healthy volunteers. Changes in cerebral energy metabolism were investigated using 31P‐MR spectroscopy. Metabolite ratios were compared before (T1) and after training (T2). Additional questionnaire assessments were included.

Results

The participants performed FAM daily. Depression and anxiety scores revealed a lower level of state anxiety at T2 compared to T1. From T1 to T2, energy metabolism ratios showed the following differences: PCr/ATP increased right occipitally; Pi/ATP decreased bilaterally in the basal ganglia and temporal lobe on the right; PCr/Pi increased in occipital lobe bilaterally, in the basal ganglia and in the temporal lobe on the right side. The pH decreased temporal on the left side and frontal in the right side. The observed changes in the temporal areas and basal ganglia may be interpreted as a higher energetic state, whereas the frontal and occipital areas showed changes that may be related to a down‐regulation in ATP turnover, energy state, and oxidative capacity.

Conclusions

The results of the current study indicate for the first time in a longitudinal study that even short‐term training in FAM may have considerable effects on brain energy state with different local energy management in specific brain regions. Especially higher energetic state in basal ganglia may represent altered function in their central role in complex cerebral distributed networks including frontal and temporal areas. Further studies including different forms of relaxation techniques should be performed for more specific and reliable insights.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821578/