Neurofeedback in Novice Meditators Can Alter Brain Activity like that Observed in Expert Meditators

Neurofeedback in Novice Meditators Can Alter Brain Activity like that Observed in Expert Meditators

 

By John M. de Castro, Ph.D.

 

Modern researchers and practitioners are finding a possible new solution to these challenges by using EEG biofeedback to increase awareness of subtle states of consciousness and speed the learning process.” – Jeff Tarrant

 

Meditation training has been shown to improve health and well-being. It has also been found to be effective for a large array of medical and psychiatric conditions, either stand-alone or in combination with more traditional therapies. As a result, meditation training has been called the third wave of therapies. But meditation can be challenging to learn and many people become discouraged and drop the practice. But modern neuroscience has developed a tool called neurofeedback that can assist the meditator in improving the meditative experience.

 

In today’s Research News article “Closed-Loop Frontal Midlineθ Neurofeedback: A Novel Approach for Training Focused-Attention Meditation.” (See summary below or view the full text of the study at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344173/ ) Brandmeyer and Delorme recruited healthy meditation-naïve adults and assigned them to either a neurofeedback group or to an age and gender matched active sham control group. Training occurred over 2 weeks in 8 sessions. All participants had their electroencephalogram (EEG) recorded while performing breath focused meditation while receiving feedback as to the level of theta activity (4-6 hz.) from the frontal midline. They were instructed to try to increase the level of frontal midline theta. The neurofeedback group received feedback based upon their own brain activity while the sham group received the feedback, not from their own brain activity but from the activity of their paired experimental participant. At the beginning and end of the 8 training sessions the participants were measured for executive functioning including memory, sustained attention, and focused attention.

 

They found that the neurofeedback produced a significant progressive increase in frontal midline theta power over the 8 sessions while the sham control had none. The neurofeedback group also had a significant improvement in short-term memory while the sham group had a significant deterioration in short-term memory. While the neurofeedback group was performing the short-term memory task, they had a significant increase in gamma activity in the EEG which was absent in the sham group.

 

A strength of the present study is that the control condition was active and the participants went through the same protocol as the neurofeedback participants with the sole difference being that the neurofeedback participants received feedback on their own brain activity while the sham group did not. This is an excellent control condition that accounts for many potential sources of confounding. So, the results can be interpreted as due to the neurofeedback and not some other spurious cause.

 

High levels of midline frontal theta power in the EEG is characteristic of experienced meditators. It can be speculated that the neurofeedback procedure by increasing midline frontal theta power produce brain activity in novices similar to that produced by years of meditation training. The improved short-term memory is also observed in expert meditators. This suggests that neurofeedback may be used to rapidly improve meditation. It remains for future studies to examine whether the increased midline frontal theta power is associated with increased depth of meditation. If so, this may be a method to rapidly improve meditation in novices.

 

So, neurofeedback in novice meditators can alter brain activity like that observed in expert meditators.

 

Effective meditation practice is associated with several specific patterns of brain waves. This is one reason why neurofeedback is so effective, you can literally teach your brain to take on the right brain wave pattern for the style of meditation you are trying to practice.” – James V. Hardt

 

CMCS – Center for Mindfulness and Contemplative Studies

 

This and other Contemplative Studies posts are also available on Google+ https://plus.google.com/106784388191201299496/posts and on Twitter @MindfulResearch

 

Study Summary

 

Brandmeyer, T., & Delorme, A. (2020). Closed-Loop Frontal Midlineθ Neurofeedback: A Novel Approach for Training Focused-Attention Meditation. Frontiers in human neuroscience, 14, 246. https://doi.org/10.3389/fnhum.2020.00246

 

Abstract

Cortical oscillations serve as an index of both sensory and cognitive processes and represent one of the most promising candidates for training and targeting the top-down mechanisms underlying executive functions. Research findings suggest that theta (θ) oscillations (3–7 Hz) recorded over frontal-midline electrodes are broadly associated with a number of higher-order cognitive processes and may serve as the mechanistic backbone for cognitive control. Frontal-midline theta (FMθ) oscillations have also been shown to inversely correlate with activity in the default mode network (DMN), a network in the brain linked to spontaneous thought processes such as mind-wandering and rumination. In line with these findings, we previously observed increased FMθ oscillations in expert meditation practitioners during reported periods of focused-attention meditation practice when compared to periods of mind-wandering. In an effort to narrow the explanatory gap by directly connecting observed neurophysiological activity in the brain to the phenomenological nature of reported experience, we designed a methodologically novel and adaptive neurofeedback protocol with the aim of modulating FMθ while having meditation novice participants implement breath-focus strategies derived from focused-attention mediation practices. Participants who received eight sessions of the adaptive FMθ-meditation neurofeedback protocol were able to significantly modulate FMθ over frontal electrodes using focused-attention meditation strategies relative to their baseline by the end of the training and demonstrated significantly faster reaction times on correct trials during the n-back working memory task assessed before and after the FMθ-meditation neurofeedback protocol. No significant differences in frontal theta activity or behavior were observed in the active control participants who received age and gender matched sham neurofeedback. These findings help lay the groundwork for the development of brain training protocols and neurofeedback applications that aim to train features of the mental states and traits associated with focused-attention meditation.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344173/

 

Leave a Reply

Your email address will not be published. Required fields are marked *

*
*
Website