Improve Attentional Focus with Meditation

Improve Attentional Focus with Meditation

 

By John M. de Castro, Ph.D.

 

“realize that everything we think, feel, say, or do from one moment to the next all ultimately depend on the interactions between attention and awareness. Mindfulness is the optimum interaction between the two. Therefore, by skillfully working with attention and awareness to cultivate mindfulness, we can change everything we think, feel, say, and do for the better. In other words, we can completely transform who we are.” – Travis May

 

One of the primary effects of mindfulness training is an improvement in the ability to pay attention to the task at hand and ignore interfering stimuli. This is an important consequence of mindfulness training and produces improvements in thinking, reasoning, and creativity. The importance of heightened attentional ability to the individual’s ability to navigate the demands of complex modern life cannot be overstated. It helps at work, in relationships, or simply driving a car.

 

There is evidence that mindfulness training improves attention by altering the brain. It appears That mindfulness training increases the size, connectivity, and activity of areas of the brain that are involved in paying attention. A common method to study the activity of the nervous system is to measure the electrical signal at the scalp above brain regions. Changes in this activity are measurable with mindfulness training. One method to observe attentional processing in the brain is to measure the changes in the electrical activity that occur in response to specific stimuli. These are called evoked potentials or ERPs. The signal following a stimulus changes over time. The fluctuations of the signal after specific periods of time are thought to measure different aspects of the nervous system’s processing of the stimulus.

 

The Pd response in the evoked potential (ERP) is a positive going electrical response occurring between a tenth to 3 tenths of a second following the target stimulus presentation. The Pd (distractor positivity) component is thought to reflect an attentional suppression process involved in preventing shifts in attention. The N2pc response is a negative electrical change that occurs around 2 tenths of a second following the target stimulus presentation. The N2pc response has been associated with the engagement of visual attention, deploying attentional processes when needed. These components of the evoked potential can be used to assess the nature of attentional processing before and after meditation, reflecting how meditation might improve attention.

 

In today’s Research News article “Meditation Effects on the Control of Involuntary Contingent Reorienting Revealed With Electroencephalographic and Behavioral Evidence.” (See summary below or view the full text of the study at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962705/ ), Tsai and colleagues recruited a group of college students who were meditators and a group who were not. They were asked to perform a rapid serial visual presentation task before and after a 30-minute meditation or rest. Order was counterbalanced on two different days. During the task the Electroencephalogram (EEG) was recorded and event related potentials identified and recorded related to the onset of the target stimulus.

 

The rapid serial visual presentation task consisted of the rapid presentation on a computer screen of three letters on the left, center, and right of the middle of the screen. The subjects were asked to respond by pressing a key with the right hand when the central letter was red and between the letter A to J in the alphabet and with the left hand when the red letter was present and between letter Q to Z. A red letter in the center occurred only once in every 24 trials. New letters were presented very rapidly, every .067 seconds. On occasions a red letter was presented as a distractor in either the left or right position. The participants were instructed to only respond to the letter in the center.

 

They found that when the red distractor was present in the left or right positions performance was significantly less accurate than when it was absent. But, although performance significantly improved after both meditation and rest, it was significantly better after meditation than after rest. In addition, after meditation, the Pd (distractor positivity) component of the evoked potential in response to the presence of a distractor red letter was stronger than after rest.

 

These results are interesting and suggest that after meditation the individual is better able to ignore a distractor and respond more accurately to a target. The EEG results with the evoked potentials suggest that the nervous system, after meditation, becomes better able to suppress responding to distractors in the immediate environment. This suggests that meditation enhances attention by preventing a shift in attention to other stimuli in the environment and thereby maintaining attention on the intended focus. Hence, the results suggest that meditation may improve attention by altering the brain’s processing of the stimuli present making it better able to focus by preventing responding to other stimuli.

 

So, improve attentional focus with meditation.

 

“A long-term study finds that consistent and intensive meditation sessions can have a long-lasting effect on a person’s attention span and other cognitive abilities.” – Rick Nauert

 

CMCS – Center for Mindfulness and Contemplative Studies

 

This and other Contemplative Studies posts are also available on Google+ https://plus.google.com/106784388191201299496/posts and on Twitter @MindfulResearch

 

Study Summary

 

Tsai, S.-Y., Jaiswal, S., Chang, C.-F., Liang, W.-K., Muggleton, N. G., & Juan, C.-H. (2018). Meditation Effects on the Control of Involuntary Contingent Reorienting Revealed With Electroencephalographic and Behavioral Evidence. Frontiers in Integrative Neuroscience, 12, 17. http://doi.org/10.3389/fnint.2018.00017

 

Abstract

Prior studies have reported that meditation may improve cognitive functions and those related to attention in particular. Here, the dynamic process of attentional control, which allows subjects to focus attention on their current interests, was investigated. Concentrative meditation aims to cultivate the abilities of continuous focus and redirecting attention from distractions to the object of focus during meditation. However, it remains unclear how meditation may influence attentional reorientation, which involves interaction between both top-down and bottom-up processes. We aimed to investigate the modulating effect of meditation on the mechanisms of contingent reorienting by employing a rapid serial visual presentation (RSVP) task in conjunction with electrophysiological recording. We recruited 26 meditators who had an average of 2.9 years of meditation experience and a control group comprising 26 individuals without any prior experience of meditation. All subjects performed a 30-min meditation and a rest condition with data collected pre- and post-intervention, with each intervention given on different days. The state effect of meditation improved overall accuracy for all subjects irrespective of their group. A group difference was observed across interventions, showing that meditators were more accurate and more efficient at attentional suppression, represented by a larger Pd (distractor positive) amplitude of event related modes (ERMs), for target-like distractors than the control group. The findings suggested that better attentional control with respect to distractors might be facilitated by acquiring experience of and skills related to meditation training.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962705/

 

Leave a Reply

Your email address will not be published. Required fields are marked *

*
*
Website